Steward menyebutkan bahwa pada suatu segitiga ABC dengan titik D berada pada garis AB, maka berlaku
Stewart's Theorem states that in a triangle ABC which D is on segment AB, then
$AD^{2}\cdot BC=AB^{2}\cdot CD+AC^{2}\cdot BD-BD\cdot CD\cdot BC$
atau (or)
$d^{2}\cdot a=b^{2}\cdot m+c^{2}\cdot n-m\cdot n\cdot a$
Pembuktian (Prove)
Dalam pembuktian ini, akan digunakan garis bantu AP yaitu $\triangle ABC$ yang ditarik tegak lurus garis BC
In this prove, we will draw segment AP which is the altitude of $\triangle ABC$ from A and perpendicular to BC.
From $equation (1)$ and $(2)$, with Pythagoras Theorem, then
From equation $(1)$ and $(2)$, with Pythagoras Theorem, then
Substitute equation $(5)$ to $(4)$
In this prove, we will draw segment AP which is the altitude of $\triangle ABC$ from A and perpendicular to BC.
Misalkan, $AP=t$ dan $BP=x$, sehingga $BD=m-x$
Let, $AP=t$ dan $BP=x$, so $BD=m-x$ Pada $\triangle ABP$, dengan menggunakan teorema Pythagoras, diperoleh
From $\triangle ABP$, with Pythagoras Theorem, then
From $\triangle ADP$, with Pythagoras Theorem, then
From $\triangle ACP$, with Pythagoras Theorem, then
Dari persaman (1) dan (2), diperolehLet, $AP=t$ dan $BP=x$, so $BD=m-x$ Pada $\triangle ABP$, dengan menggunakan teorema Pythagoras, diperoleh
From $\triangle ABP$, with Pythagoras Theorem, then
$t^2=c^2-x^2$.......$(1)$
Pada $\triangle ADP$, dengan menggunakan teorema Pythagoras, diperolehFrom $\triangle ADP$, with Pythagoras Theorem, then
$t^2=d^2-(m-x)^2$.......$(2)$
Pada $\triangle ACP$, dengan menggunakan teorema Pythagoras, diperolehFrom $\triangle ACP$, with Pythagoras Theorem, then
$t^2=b^2-(n+(m-x))^2$.......$(3)$
From $equation (1)$ and $(2)$, with Pythagoras Theorem, then
$c^2-x^2=d^2-(m-x)^2$
$c^2-x^2=d^2-(m^2-2mx+x^2)$
$c^2-x^2=d^2-m^2+2mx-x^2$
$d^2=c^2+m^2-2mx$
-------------------------$\times a$
$d^{2}a=c^{2}a+m^{2}a-2mxa$
$d^{2}a=c^{2}(m+n)+m^{2}(m+n)-2mx(m+n)$
$d^{2}a=c^{2}m+c^{2}n+m^{3}+m^{2}n-2m^{2}x-2mnx$ .......$(4)$
Dari persaman (1) dan (2), diperoleh$c^2-x^2=d^2-(m^2-2mx+x^2)$
$c^2-x^2=d^2-m^2+2mx-x^2$
$d^2=c^2+m^2-2mx$
-------------------------$\times a$
$d^{2}a=c^{2}a+m^{2}a-2mxa$
$d^{2}a=c^{2}(m+n)+m^{2}(m+n)-2mx(m+n)$
$d^{2}a=c^{2}m+c^{2}n+m^{3}+m^{2}n-2m^{2}x-2mnx$ .......$(4)$
From equation $(1)$ and $(2)$, with Pythagoras Theorem, then
$c^2-x^2=b^2-(n+(m-x))^2$
$c^2-x^2=b^2-(n^2+2n(m-x)+(m-x)^2)$
$c^2-x^2=b^2-n^2-2n(m-x)-(m^2-2mx+x^2)^2$
$c^2-x^2=b^2-n^2-2mn+2nx-m^2+2mx-x^2$
$c^2=b^2-n^2-2mn+2nx-m^2+2mx$
---------------------------------------------$\times m$
$c^{2}m=b^{2}m-n^{2}m-2m^{2}n+2mnx-m^{3}+2m^{2}x$ .......$(5)$
Substitusikan persamaan (5) ke (4),$c^2-x^2=b^2-(n^2+2n(m-x)+(m-x)^2)$
$c^2-x^2=b^2-n^2-2n(m-x)-(m^2-2mx+x^2)^2$
$c^2-x^2=b^2-n^2-2mn+2nx-m^2+2mx-x^2$
$c^2=b^2-n^2-2mn+2nx-m^2+2mx$
---------------------------------------------$\times m$
$c^{2}m=b^{2}m-n^{2}m-2m^{2}n+2mnx-m^{3}+2m^{2}x$ .......$(5)$
Substitute equation $(5)$ to $(4)$
$d^{2}a=(b^{2}m-n^{2}m-2m^{2}n+2mnx-m^{3}+2m^{2}x)+c^{2}n+m^{3}+m^{2}n-2m^{2}x-2mnx$
$d^{2}a=b^{2}m+c^{2}n-n^{2}m-m^{2}n$
$d^{2}a=b^{2}m+c^{2}n-mn(n+m)$
$d^{2}a=b^{2}m+c^{2}n-mna.(Q.E.D)$
$d^{2}a=b^{2}m+c^{2}n-mn(n+m)$
$d^{2}a=b^{2}m+c^{2}n-mna.(Q.E.D)$
No comments:
Post a Comment