Bentuk umum:
Definisi:
Contoh 1.
$2^4=2\times 2\times 2\times 2=16$
Contoh 2.
$\left ( -3 \right )^{3}=\left ( -3 \right )\times \left ( -3 \right )\times \left ( -3 \right )=-27$
$a^n$
dengan a sebagai bilangan pokok atau basis, dan b sebagai pangkat.Definisi:
$a^n=\underbrace{a\times a \times a\times ... \times a}_{n\ kali}$
Contoh 1.
$2^4=2\times 2\times 2\times 2=16$
Contoh 2.
$\left ( -3 \right )^{3}=\left ( -3 \right )\times \left ( -3 \right )\times \left ( -3 \right )=-27$
Sifat-Sifat Eksponen
Sifat 1.
$a^m\times a^n=a^{m+n}$
Bukti:
$a^m\times a^n=(\underbrace{a\times a \times a\times ... \times a}_{m\ kali}) \times (\underbrace{a\times a \times a\times ... \times a}_{n\ kali})$
$\leftrightarrow a^m\times a^n=\underbrace{a\times a \times a\times ... \times a}_{m+n\
kali}$
$\leftrightarrow a^m\times a^n=a^{m+n}$
Contoh 3.
$2^3 \times 2^5 = 2^{3+5}=2^8$
Contoh 4.
$p^4 \times p^6 = p^{4+6}=p^{10}$
Sifat 2.
$\frac{a^m}{a^n}=a^{m-n}$
Bukti:
$\frac{a^m}{a^n}=\frac{( \underbrace{a\times a \times a\times ... \times a}_{m\ kali})}{( \underbrace{a\times a \times a\times ... \times a}_{n\ kali})}$
$\leftrightarrow \frac{a^m}{a^n}=\underbrace{a\times a \times a\times ... \times a}_{m-n\
kali}$
Contoh 5.
$\frac{3^7}{3^2}=3^{7-2}=3^5$
Contoh 6.
$\frac{q^10}{q^7}=q^{10-7}=q^3$
Sifat 3. (Implikasi Sifat 2)
$a^0=1$
Bukti:
$a^0=a^{m-m}$
$\leftrightarrow a^0=\frac{a^m}{a^m}$________________ (dari sifat 2)
$\leftrightarrow a^0=\frac{(
\underbrace{a\times a \times a\times ... \times a}_{m\ kali})}{(
\underbrace{a\times a \times a\times ... \times a}_{m\ kali})}$
$\leftrightarrow a^0=1$
Contoh 7.
$3^0=1$
Contoh 8.
$r^0=1$
Sifat 4. (Implikasi Sifat 2)
$a^{-m}=\frac{1}{m}$
Bukti:
$a^{-m}=a^{0-m}$
$\leftrightarrow a^{-m}=\frac{a^0}{a^m}$________________ (dari sifat 2)
$\leftrightarrow a^{-m}=\frac{1}{a^m}$
Contoh 9.
$5^{-1}=\frac{1}{5}$
Contoh 10.
$2^{-3}=\frac{1}{2^3}=\frac{1}{8}$
Sifat 5.
$\left ( a^{m} \right )^{n}=a^{mn}$
Bukti:
$(a^m)^n=\underbrace{a \times a \times ... \times a}_{mn\ kali}$
$\left ( a^{m} \right )^{n}=a^{mn}$
Contoh 11.
$(2^5)^{4}=2^{20}$
$27^5=(3^3)^5=3^{15}$
Sifat 6.
$\left ( ab \right )^{m}=a^{m}\times b^{m}$
Bukti: $(ab)^m=\underbrace{(ab)\times (ab) \times ... \times (ab)}_{m\ kali}$ $(ab)^m=\underbrace{a \times a \times ... \times a}_{m\ kali} \times \underbrace{b \times b \times ... \times b}_{m\ kali}$
$(ab)^m=a^m \times b^m$
Contoh 13.
Bukti: $(ab)^m=\underbrace{(ab)\times (ab) \times ... \times (ab)}_{m\ kali}$ $(ab)^m=\underbrace{a \times a \times ... \times a}_{m\ kali} \times \underbrace{b \times b \times ... \times b}_{m\ kali}$
$(ab)^m=a^m \times b^m$
Contoh 13.
$(2mn)^{4}=2^4 m^4 n^4$
Contoh 14.
$(3a^3 b^2)^3=3^3 (a^3)^3 (b^2)^3=27a^9 b^6$
Sifat 7.
$\left ( {\frac{a}{b}} \right )^{m}=\frac{a^{m}}{ b^{m}}$
Bukti:$\left ( {\frac{a}{b}} \right )^{m}= \underbrace{\frac{a}{b} \times \frac{a}{b} \times ... \times \frac{a}{b}}_{m\ kali}$
$\left ( {\frac{a}{b}} \right )^{m}= \frac{\underbrace{a \times a \times ... \times a}_{m\ kali}}{\underbrace{b \times b \times ... \times b}_{m\ kali}}$
$\left ( {\frac{a}{b}} \right )^{m}=\frac{a^{m}}{ b^{m}}$
Contoh 15.
$\left ( {\frac{p}{q}} \right )^{3}=\frac{p^{3}}{ q^{3}}$
$\left ( {\frac{m}{2n}} \right )^{5}=\frac{m^{5}}{2^{5} n^5}\frac{m^{5}}{32 n^5}$
Cek juga soal dan pembahasannya pada Soal dan Pembahasan Eksponen
Kumpulan Soal Persiapan Masuk Perguruan Tinggi Negeri:
Persamaan Kuadrat
Logaritma
Polinomial
Trigonometri
Lingkaran
Vektor
No comments:
Post a Comment