Soal 1.
Diketahui ${^3 \log {x}}=4$, maka nilai dari $x=....$
Jawab:
${^2 \log {x}}=-3 \leftrightarrow x=2^{-3}=\frac{1}{2^3}=\frac{1}{8}$
Diketahui ${^3 \log {x}}=4$, maka nilai dari $x=....$
Jawab:
${^2 \log {x}}=-3 \leftrightarrow x=2^{-3}=\frac{1}{2^3}=\frac{1}{8}$
Soal 2.
Diketahui ${^3 \log {x}}=4$, maka nilai dari $x=....$
Jawab:
${^3 \log {x}}=4 \leftrightarrow x=3^4$
Diketahui ${^3 \log {x}}=4$, maka nilai dari $x=....$
Jawab:
${^3 \log {x}}=4 \leftrightarrow x=3^4$
Soal 3.
Nilai dari ${^2 \log 8 }= ....$
Jawab:
${^2 \log 8} = {^2 \log {2^3}}=3 \cdot ^2 \log {2}$
Nilai dari ${^2 \log 8 }= ....$
Jawab:
${^2 \log 8} = {^2 \log {2^3}}=3 \cdot ^2 \log {2}$
Soal 4.
Hasil dari ${^3 \log {63}}- {^3 \log {7}} + {^6 log {36}}= ....$
Jawab:
${^3 \log {63}}- {^3 \log {7}} + {^6 log {36}} ={^3 \log {\frac{ 63}{7}}} + {^6 log {6^2}}$
${^3 \log {63}}- {^3 \log {7}} + {^6 log {36}} ={^3 \log {9}} + {^6 log {6^2}}$
${^3 \log {63}}- {^3 \log {7}} + {^6 log {36}} ={^3 \log {3^2}} + {^6 log {6^2}}$
${^3 \log {63}}- {^3 \log {7}} + {^6 log {36}} ={2\cdot ^3 \log {3^2}} + {2\cdot ^6 log {6^2}}$
${^3 \log {63}}- {^3 \log {7}} + {^6 log {36}} =2+ 2=4$
Hasil dari ${^3 \log {63}}- {^3 \log {7}} + {^6 log {36}}= ....$
Jawab:
${^3 \log {63}}- {^3 \log {7}} + {^6 log {36}} ={^3 \log {\frac{ 63}{7}}} + {^6 log {6^2}}$
${^3 \log {63}}- {^3 \log {7}} + {^6 log {36}} ={^3 \log {9}} + {^6 log {6^2}}$
${^3 \log {63}}- {^3 \log {7}} + {^6 log {36}} ={^3 \log {3^2}} + {^6 log {6^2}}$
${^3 \log {63}}- {^3 \log {7}} + {^6 log {36}} ={2\cdot ^3 \log {3^2}} + {2\cdot ^6 log {6^2}}$
${^3 \log {63}}- {^3 \log {7}} + {^6 log {36}} =2+ 2=4$
Soal 5.
Jika nilai dari $^2 \log {3}=a$ maka nilai dari $^3 log {2}= ....$
Jawab:
$^3 log {2}= \frac {1}{^2\log{3}}=\frac {1}{a}$
Jika nilai dari $^2 \log {3}=a$ maka nilai dari $^3 log {2}= ....$
Jawab:
$^3 log {2}= \frac {1}{^2\log{3}}=\frac {1}{a}$
Soal 6.
Jika nilai dari $^4 \log {3}=a$ maka nilai dari $^2 log {3}= ....$
Jawab:
$^4 \log {3}=a$
$^{2^2} \log {3}=a$
$\frac{1}{2}{^{2} \log {3}}=a$
Jika nilai dari $^4 \log {3}=a$ maka nilai dari $^2 log {3}= ....$
Jawab:
$^4 \log {3}=a$
$^{2^2} \log {3}=a$
$\frac{1}{2}{^{2} \log {3}}=a$
Soal 7.
Jika nilai dari $^25 \log {3}=m$ maka nilai dari $^27 log {5}= ....$
Jawab:
$^25 \log {3}=m$
$^{5^2} \log {3}=m$
$\frac{1}{2}{^{5} \log {3}}=m$ $^5 \log {3}=2m$
$^27 log {5}= ^{3^3}\log {5}=\frac{1}{3} \cdot {^3 \log {5}}=\frac{1}{3} \cdot \frac{1}{^5 \log {3}}=\frac{1}{3} \cdot \frac{1}{2m}=\frac{1}{6m}$
Jika nilai dari $^25 \log {3}=m$ maka nilai dari $^27 log {5}= ....$
Jawab:
$^25 \log {3}=m$
$^{5^2} \log {3}=m$
$\frac{1}{2}{^{5} \log {3}}=m$ $^5 \log {3}=2m$
$^27 log {5}= ^{3^3}\log {5}=\frac{1}{3} \cdot {^3 \log {5}}=\frac{1}{3} \cdot \frac{1}{^5 \log {3}}=\frac{1}{3} \cdot \frac{1}{2m}=\frac{1}{6m}$
Soal 8.
Diketahui $^5 \log 3 = a$ dan $^3 \log 4 = b$, maka nilai $^4 \log {15} = ....$
a. $\frac{1+a}{ab}$
b. $\frac{1+a}{1+b}$
c. $\frac{1+b}{1-a}$
d. $\frac{ab}{1-a}$
e. $\frac{ab}{1-b}$
Jawab: A.
$^4 \log {15} =\frac{^3 log {15}}{^3 \log {4}}$
$^4 \log {15} =\frac{^3 log {5\times 3}}{^3 \log {4}}$
$^4 \log {15} =\frac{^3 \log {5} +^3 log {3}}{^3 \log {4}}$
$^4 \log {15} =\frac{\frac{1}{a} +1}{b}$
$^4 \log {15} =\frac{\frac{1}{a} +1}{b}\times \frac{a}{a}$
$^4 \log {15} =\frac{1+a}{ab}$.
Diketahui $^5 \log 3 = a$ dan $^3 \log 4 = b$, maka nilai $^4 \log {15} = ....$
a. $\frac{1+a}{ab}$
b. $\frac{1+a}{1+b}$
c. $\frac{1+b}{1-a}$
d. $\frac{ab}{1-a}$
e. $\frac{ab}{1-b}$
Jawab: A.
$^4 \log {15} =\frac{^3 log {15}}{^3 \log {4}}$
$^4 \log {15} =\frac{^3 log {5\times 3}}{^3 \log {4}}$
$^4 \log {15} =\frac{^3 \log {5} +^3 log {3}}{^3 \log {4}}$
$^4 \log {15} =\frac{\frac{1}{a} +1}{b}$
$^4 \log {15} =\frac{\frac{1}{a} +1}{b}\times \frac{a}{a}$
$^4 \log {15} =\frac{1+a}{ab}$.
Soal 9.
Diketahui $^2 \log 3 = x$ dan $^2 \log 10 = y$, maka nilai $^6 \log {120} = ....$
a. $\frac{x}{xy+2}$
b. $\frac{xy+2}{x}$
c. $\frac{2xy}{x+1}$
d. $\frac{x+y+2}{x+1}$
e. $\frac{x+1}{x+y+2}$
Jawab: D.
$^6 \log {120} =\frac{^2 log {120}}{^2 \log {6}}$
$^6 \log {120} =\frac{^2 log {12\times 10}}{^2 \log {3\times 2}}$
$^6 \log {120} =\frac{^2 \log {12} +^2 log {10}}{^2 \log {3}+{^2 \log {2}}}$
$^6 \log {120} =\frac{^2 \log {3 \times 4} +^2 log {10}}{^2 \log {3}+{^2 \log {2}}}$
$^6 \log {120} =\frac{^2 \log {3}+ ^2 \log {4}+^2 log {10}}{^2 \log {3}+{^2 \log {2}}}$
$^6 \log {120} =\frac{^2 \log {3}+ ^2 \log {2^2}+^2 log {10}}{^2 \log {3}+{^2 \log {2}}}$
$^6 \log {120} =\frac{^2 \log {3}+2\cdot ^2 \log {2}+^2 log {10}}{^2 \log {3}+{^2 \log {2}}}$
$^6 \log {120} =\frac{x+2+y}{x+1}=\frac{x+y+2}{x+1}$
Diketahui $^2 \log 3 = x$ dan $^2 \log 10 = y$, maka nilai $^6 \log {120} = ....$
a. $\frac{x}{xy+2}$
b. $\frac{xy+2}{x}$
c. $\frac{2xy}{x+1}$
d. $\frac{x+y+2}{x+1}$
e. $\frac{x+1}{x+y+2}$
Jawab: D.
$^6 \log {120} =\frac{^2 log {120}}{^2 \log {6}}$
$^6 \log {120} =\frac{^2 log {12\times 10}}{^2 \log {3\times 2}}$
$^6 \log {120} =\frac{^2 \log {12} +^2 log {10}}{^2 \log {3}+{^2 \log {2}}}$
$^6 \log {120} =\frac{^2 \log {3 \times 4} +^2 log {10}}{^2 \log {3}+{^2 \log {2}}}$
$^6 \log {120} =\frac{^2 \log {3}+ ^2 \log {4}+^2 log {10}}{^2 \log {3}+{^2 \log {2}}}$
$^6 \log {120} =\frac{^2 \log {3}+ ^2 \log {2^2}+^2 log {10}}{^2 \log {3}+{^2 \log {2}}}$
$^6 \log {120} =\frac{^2 \log {3}+2\cdot ^2 \log {2}+^2 log {10}}{^2 \log {3}+{^2 \log {2}}}$
$^6 \log {120} =\frac{x+2+y}{x+1}=\frac{x+y+2}{x+1}$
Soal 10.
Diketahui $^3 \log 6 = p$ dan $^3 \log 2 = q$, maka nilai $^{24} \log 288 = ....$
a. $\frac{2p+3q}{p+2q}$
b. $\frac{3p+2q}{p+2q}$
c. $\frac{p+2q}{2p+3q}$
d. $\frac{p+2q}{3p+2q}$
e. $\frac{2p+q}{2p+3q}$
Jawab: A.
$^24 \log {288} =\frac{^3 log {288}}{^3 \log {24}}$
$^24 \log {288} =\frac{^3 log {36\times 8}}{^3 \log {6 \times 4}}$
$^24 \log {288} =\frac{^3 log {36} +^3 log {8}}{^3 \log {6}+^3 log {4}}$
$^24 \log {288} =\frac{^3 log {6^2} +^3 log {2^3}}{^3 \log {6}+^3 log {2^2}}$
$^24 \log {288} =\frac{2\cdot ^3 log {6} +3\cdot ^3 log {2}}{^3 \log {6}+2\cdot ^3 log {2}}$
$^24 \log {288} =\frac{2p +3q}{p+2q}$
Diketahui $^3 \log 6 = p$ dan $^3 \log 2 = q$, maka nilai $^{24} \log 288 = ....$
a. $\frac{2p+3q}{p+2q}$
b. $\frac{3p+2q}{p+2q}$
c. $\frac{p+2q}{2p+3q}$
d. $\frac{p+2q}{3p+2q}$
e. $\frac{2p+q}{2p+3q}$
Jawab: A.
$^24 \log {288} =\frac{^3 log {288}}{^3 \log {24}}$
$^24 \log {288} =\frac{^3 log {36\times 8}}{^3 \log {6 \times 4}}$
$^24 \log {288} =\frac{^3 log {36} +^3 log {8}}{^3 \log {6}+^3 log {4}}$
$^24 \log {288} =\frac{^3 log {6^2} +^3 log {2^3}}{^3 \log {6}+^3 log {2^2}}$
$^24 \log {288} =\frac{2\cdot ^3 log {6} +3\cdot ^3 log {2}}{^3 \log {6}+2\cdot ^3 log {2}}$
$^24 \log {288} =\frac{2p +3q}{p+2q}$
Soal 11.
Diketahui $^7 \log 2 = a$ dan $^2 \log 3 = b$, maka nilai $^{6} \log 14= ....$
a. $\frac{a}{a+b}$
b. $\frac{a+1}{b+1}$
c. $\frac{a+1}{a(b+1)}$
d. $\frac{b+1}{a+1}$
e. $\frac{b+1}{b(a+1)}$
Jawab: C.
$^6 \log {14} =\frac{^2 log {14}}{^2 \log {6}}$
$^6 \log {14} =\frac{^2 log {7\times 2}}{^2 \log {3\times 2}}$
$^6 \log {14} =\frac{^2 log {7}+^2 log {2}}{^2 \log {3}+^2 \log {2}}$
$^6 \log {14} =\frac{\frac{1}{a}+1}{b+1}$
$^6 \log {14} =\frac{\frac{1}{a}+1}{b+1}\times \frac{a}{a}$
$^6 \log {14} =\frac{1+a}{a(b+1)}$
Diketahui $^7 \log 2 = a$ dan $^2 \log 3 = b$, maka nilai $^{6} \log 14= ....$
a. $\frac{a}{a+b}$
b. $\frac{a+1}{b+1}$
c. $\frac{a+1}{a(b+1)}$
d. $\frac{b+1}{a+1}$
e. $\frac{b+1}{b(a+1)}$
Jawab: C.
$^6 \log {14} =\frac{^2 log {14}}{^2 \log {6}}$
$^6 \log {14} =\frac{^2 log {7\times 2}}{^2 \log {3\times 2}}$
$^6 \log {14} =\frac{^2 log {7}+^2 log {2}}{^2 \log {3}+^2 \log {2}}$
$^6 \log {14} =\frac{\frac{1}{a}+1}{b+1}$
$^6 \log {14} =\frac{\frac{1}{a}+1}{b+1}\times \frac{a}{a}$
$^6 \log {14} =\frac{1+a}{a(b+1)}$
Baca juga artikel berikut:
Sifat-Sifat Logaritma dan Pembuktiannya
Soal dan Pembahasan Logaritma: Persiapan Masuk Perguruan Tinggi Negeri